If it's not what You are looking for type in the equation solver your own equation and let us solve it.
12p^2-6p-15=0
a = 12; b = -6; c = -15;
Δ = b2-4ac
Δ = -62-4·12·(-15)
Δ = 756
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{756}=\sqrt{36*21}=\sqrt{36}*\sqrt{21}=6\sqrt{21}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{21}}{2*12}=\frac{6-6\sqrt{21}}{24} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{21}}{2*12}=\frac{6+6\sqrt{21}}{24} $
| -(x+3)=2x-3 | | -(f+12)=24 | | 2(x-1)-7x=18-5(x=4) | | 90+2x+4+3x+1=26 | | 13/17=6/y | | x=2(3.14*7.5^ | | (12-x)•3=-54 | | 27x+2=28x | | 2a-5a=0 | | -3.5+p/8=5.2 | | 12x(x-3)=-54 | | 12(x-3x)=-54 | | 3y+11.5=-48.5 | | 12(x-3)=-54 | | 0.66x+2.5=7 | | (19/24)=(-5/6)x-(1/4) | | 2(x+3)=3x-9 | | -2y÷5=4 | | 1.8+x-3.9=-2+5.7 | | 19/24=-5/6x-1/4 | | -4(u-6)=-2u+8 | | Y=25/5x | | Y=-2x^2+360x | | 92=x+93 | | 4.5+z=-9 | | 1y÷3=4 | | -13=9+8b | | 22=-7w+3(w+6) | | 15x+11+9x+7+6+7x+5x+12=360 | | (7/10x)+13=90 | | 2y+6.5=-11.5 | | 251=2*3.141592653589793*r*2 |